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Abstract

This paper shows analytically and numerically how an originally uniform flow structure transforms itself into a nonuniform one w
objective is to minimize global flow losses. The flow connects one point (source, sink) to a number of points (sinks, sources) d
uniformly over a two-dimensional domain. In the first part of the paper, the flow between neighboring points is modeled as fully de
through round tubes. It is shown that flow ‘maldistribution’ and the abandonment of symmetry are necessary for the developme
structures with minimal resistance. The search for better flow structures can be accelerated: tubes that show a tendency of shrin
the search can be assumed absent in future steps of structure optimization. In the second part of the paper, the flow medium is con
permeated by Darcy flow. The development of flow structures (channels) is modeled as a mechanism of erosion, where elements of
medium are removed one by one, and are replaced with a more permeable medium. The elements selected for removal are iden
on two criteria: maximum pressure integrated over the element boundary, and maximum pressure gradient. The flow structures
based on the pressure gradient criterion have consistently smaller flow resistances. As flow systems become smaller and more c
flow systems themselves become “designed porous media”. These design optimization trends revealed are generally applicable in
design, i.e., where miniaturization, global performance, compactness and complexity rule the design.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Flow maldistribution, or paths of least resistance

Many engineering applications call for the judicio
distribution of a flowing fluid through a volume. Th
requirement stems from the need to maximize the glo
performance of the macroscopic system, and the tho
that every volume element should function at the same
highest) level of performance as any other volume elem
For example, uniform distribution of flow rate is often
requirement in the design of banks of parallel tubes in h
exchangers (e.g., Fig. 1, top). One tube is thought to perf
the same as its neighbor. This idea is attractive becau
makes the design and its analytical description simple.

Thermal engineering is rich in examples of how t
intended uniform distribution is difficult to maintain i
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practice. A stream that is forced to flow through the coa
porous structure formed by assemblies of ducts has a m
of its own. It permanently seeks paths of least resista
and in this process the planned uniformity is threaten
or destroyed. In heat exchanger technology the resu
this tendency is known as flow maldistribution. It is a b
unwanted result. The same phenomenon is at work in o
flow structures with multiple parallel streams, for examp
in nuclear reactor cores, packed beds, volumetrically co
electric windings and packages of electronics [1–9].

The classical view on the origin of flow maldistributio
rests on a feedback mechanism associated with the clog
and widening of ducts. Clogging may be due to accum
tion of scale on the duct surface, or the formation of
bubbles and pockets of fluid with greater viscosity when
duct wall heats the stream. In the clogged duct the flow sl
down, and this generally leads to an intensification of
mechanism that produces clogging. Larger flow rates h
the effect of widening ducts with stretchable walls. This p
itive feedback pushes the clogged or widened ducts tow
sevier SAS. All rights reserved.
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Nomenclature

Ap tube cross-sectional area . . . . . . . . . . . . . . . . . m2

d pore length scale . . . . . . . . . . . . . . . . . . . . . . . . . m
D tube diameter, Figs. 1–6 . . . . . . . . . . . . . . . . . . . m
D side of square erodable block, Fig. 7. . . . . . . . m
k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

L length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

ṁ′′ mass flow rate per unit area. . . . . . . kg·m−2·s−1

P pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
q1,2 conduction heat currents . . . . . . . . . . . . . . . . . . W
R global flow resistance, dimensionless, Eq. (5)
u,v volume averaged velocity components, Eq. (14)
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

β constant, Eq. (20)
�P pressure difference . . . . . . . . . . . . . . . . . . . . . . . Pa
�T temperature difference . . . . . . . . . . . . . . . . . . . . K
µ viscosity . . . . . . . . . . . . . . . . . . . . . . . kg·s−1·m−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

φ porosity

Superscript

˜ dimensionless variables, Eqs. (4) and (16)

Subscripts

0 reference permeability
1 low permeability
2 high permeability
p),
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Fig. 1. Uniformly distributed flow through identical and parallel tubes (to
and the minimization of the flow resistance of a pair of tubes (bottom).

further clogging or widening, and toward more accentua
maldistribution.

In this paper we propose to look at the flow maldistrib
tion phenomenon from the point of view of constructal th
ory, whereby the natural progress of flow structures is in
direction of maximizing access for the material that flows
minimum flow resistance, increasing flow complexity, a
maximum spreading of flowing material [10]. The flow co
figuration is not specified a priori. It is the main unknown
the design. The configuration is free to change in the pu
of a global objective subject to global constraints.

Fluid streams have a characteristic analogous to
economies of scale known in economics: the transporta
cost per unit decreases when the goods are transp
in larger and larger quantities. The analogy is this: lar
streams flow more easily through correspondingly wi
ducts. Said another way, two small streams flow m
easily when they flow together through a single duct. T
inside-out counterpart of this configuration exhibits
same behavior: two solid bodies traveling through a fl
encounter less drag when they travel together [10,11].

Geometric features (e.g., coalescence) generated b
search for less resistance endow the larger flow sys
with organization, structure, geometry, or topology. Wha
perceived as bad (“mal” distribution) because of the ri
assumption of flow uniformity, is in fact good from th
point of view of minimizing all the internal flow resistanc
together, by balancing the streams against each oth
such a way that the global resistance of the macrosc
and highly complex system is minimum. The emerging fl
structure is heterogeneous, not parallel and uniform.

Additional functions such as heating, cooling and m
transfer can be designed into the optimally distributed fl
system. To illustrate this additional step is not the objec
of this paper. Recent publications illustrate convincingly
opportunity that comes from freeing the design of the u
form parallel flow assumption. Applications are emerg
in chemical engineering [12], chemical and bioreactors [
16] and electronics cooling [10,17]. In this paper we foc
strictly on fluid flow, and on how an assumed uniform flo
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structure morphs itself into a nonuniform one in which so
ducts grow, others shrink, while others disappear comple

2. Flow between two points

The simplest setting for illustrating this morphing proce
is the flow between one source and one sink. The
of optimization of flow access [10] requires straight du
and circular flow cross-sections: we take these geom
features as first results, i.e., as starting point. In the lo
part of Fig. 1 we seek to optimize the access between
two points by using two parallel round tubes of fixed len
L and diametersD1 andD2. When the tubes are identic
(D1 =D2), they may be viewed as two ‘elemental volume
of the system with prescribed uniform flow distributio
(Fig. 1, top).

The pressure difference across the two-tube assemb
fixed,�P . Throughout this paper we assume that the flow
in the Hagen–Poiseuille regime, therefore we write.

ṁ1 = πD4
1�P

128νL
(1)

ṁ2 = πD4
2�P

128νL
(2)

We also assume that the space occupied by the tub
constrained,Vp = (π/4)ApL, whereAp represents the orde
of magnitude of the sum of tube cross-sectional areas,

Ap =D2
1 +D2

2 (3)

Mass conservation requireṡm1 + ṁ2 = 2ṁ, whereṁ is the
flow rate through one tube when the distribution is unifo
Linear dimensions can be nondimensionalized by usingA

1/2
p

as scale,(
D̃1, D̃2

) = (D1,D2)/A
1/2
p (4)

The objective is to minimize the flow resistance�P/(2ṁ),
or �P/ṁ, which is represented in dimensionless terms
the group

R = �P/ṁ

128νL/(πA2
p)

(5)

The emphasis is on minimizing losses (fluid power), wh
is equivalent to minimizing pressure drops when flow ra
are specified. The two features that vary (D1,D2) are related
via constraint (3), such that theR formula that results from
Eqs. (1)–(4) has only one free parameter, for example,D̃2:

R = 2

(1− D̃2
2)

2 + D̃4
2

(6)

TheD̃2 range is[0,1]. Fig. 1 shows that the flow resistan
R is maximum whenD̃2 = 2−1/2, which represents th
design with uniform flow distribution (D1 =D2, ṁ1 = ṁ2).
This configuration is unstable if the natural tendency is
geometry to progress toward lower flow resistance. Lo
s

resistances are available toward larger and smaller va
of D̃2. The lowest(R = 2) occurs when one of the tube
disappears (̃D2 = 0, orD̃1 = 0). The total stream(ṁ1 + ṁ2)

finds it much easier to flow through a fixed volume if th
volume is configured as a single tube.

3. Flow between three corner points and one point in a
square loop

More complex flows show the same behavior, altho
the resulting flow structure is more complex and tends
hide its origin. Consider four points in a square loop (Fig
top), and assume that three (the black circles) are sourc
equal flow rate(ṁ). The fourth is the sink that collects th
total flow rate 3̇m. The four tubes that connect these poi
have the same length(L), but their diameters are differe
(D1, D2,D3,D4).

The objective is to minimize the global flow resistan
�P/(3ṁ), or �P/ṁ, or the dimensionless resistance d
fined in Eq. (5), where�P is the pressure difference b
tween the highest and the lowest pressures in the flow s
ture. The largest pressure difference�P is indicative of the
correct scale of the pressure differences that drive the
globally. Earlier constructal designs [10] have shown t
by minimizing the largest potential difference one gen
ates dendritic flow structures that are essentially the sam
those generated by minimizing the potential difference a
aged over all the points of the domain.

The tube volume constraint(Vp = π
4ApL) is based on

Ap =D2
1 +D2

2 +D2
3 +D2

4 (7)

and the dimensionless diameters areD̃i = Di/A
1/2
p (i =

1, . . . ,4). Only three of these diameters are free to va
for example,D̃1, D̃2, andD̃3. The question is how the 4
point system should be configured such thatR is minimum.
The analysis consists of writing continuity statements
flow rate (ṁ1 + ṁ3 = 3ṁ; ṁ1 − ṁ2 = ṁ; ṁ3 − ṁ4 = ṁ;
ṁ4 + ṁ2 = ṁ) and pressure (�P1 + �P2 = �P ; �P3 +
�P4 =�P , where�P is the global pressure drop), assu
ing Hagen–Poiseuille flow,

ṁi = πD4
i �Pi

128νL
(i = 1, . . . ,4) (8)

and using Eq. (7) to eliminateD4. The resulting expressio
for the overall resistance is

R =
[
3− D̃4

1

D̃4
1 + D̃4

2

− D̃4
3

D̃4
3 + (1− D̃2

1 − D̃2
2 − D̃2

3)
2

]

×
[
D̃4

1D̃
4
2

D̃4
1 + D̃4

2

+ D̃4
3(1− D̃2

1 − D̃2
2 −D2

3)
2

D̃4
3 + (1− D̃2

1 − D̃2
2 − D̃2

3)
2

]−1

(9)

The overall resistance is high(R = 32) when the flow
structure is uniform(D̃1 = D̃2 = D̃3 = D̃4 = 1/2), as
shown on the lower-left side of Fig. 2. The resistance dr
dramatically(R = 19.35) when the structure is optimize
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m struc
Fig. 2. Four tubes in a square connecting three sources with one sink. The uniform structure with tubes of the same size (left), and the nonuniforture
for minimum overall flow resistance (right).
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with respect to its three degrees of freedom. This desig
represented by

D̃1 = 0.651, D̃2 = 0.590
(10)

D̃3 = 0.477, D̃4 = 0

The relative sizes of the optimized diameters are show
the lower-right drawing of Fig. 2. Relative to the unifor
structure wherẽDi = 1/2, in the optimized structure thẽD1
andD̃2 tubes became wider, thẽD3 tube became narrowe
and one of the tubes that do not touch the sink (D̃4 in
Fig. 2) disappeared completely. In this configuration
source situated the farthest from the sink is connected
a single tube, not by two as in the uniform structu
Once again, postulated uniformity is a recipe for large fl
resistance, and the tendency is for the structure to ch
into a nonuniform one.

A configuration that performs at a level between the t
cases illustrated in Fig. 2 is the design that maintains s
metry with respect to the diagonal that passes through
source. In this casẽD1 = D̃3 and D̃2 = D̃4 serve as addi
tional constraints, and there is only one degree of freed
the ratioD2/D1, orD3/D4. The best design of this class
characterized bỹD1 = 0.543, D̃2 = 0.452 andR = 29.13.
Compared with theR values listed under the two cases
lustrated in Fig. 2, this level of performance(R = 29.13)
shows that the resistance of the best design that pres
 s

the square loop is considerably closer to the resistance o
other square-loop design that we considered(R = 32). In
other words, the major improvement in performance is r
istered when symmetry is abandoned, so that tubes with
ends may form, and the loop itself may vanish.

4. More complex flow distribution networks

We find that loopless flow networks are progressiv
more efficient as we proceed toward more complex st
tures. In this section we document this course graphic
while omitting the analytical steps outlined for simple ca
in the preceding two sections.

The top drawing of Fig. 3 shows a system of 12 tub
of the same size, which connect a central sink(8ṁ) to
eight equal sources(ṁ) arranged on the perimeter of
square. This uniform structure has four loops. The maxim
pressure difference occurs between the center (the so
and one of the corners of the large square. Note that
source-sink arrangement is not the same as joining toge
four of the square constructs studied in Fig. 2.

The structure can be optimized by selecting three of
tube diameters, because the fourth tube size results from
tube volume constraint

Ap = 2D2
1 + 4D2

2 + 2D2
3 + 4D2

4 (11)
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Fig. 3. Flow structure connecting one central sink with eight sources
square. The uniform structure with tubes of the same size (top), an
nonuniform structure for minimum overall flow resistance (bottom).

In the uniform structure the dimensionless diameters(D̃i =
Di/A

1/2
p ) are all equal to 12−1/2 = 0.289, and the resistanc

(4) is R = 360. WhenR is minimized with respect to th
three degrees of freedom, the structure acquires the fea
sketched in the lower frame of Fig. 3, where

D̃1 = 0.282, D̃2 = 0,
(12)

D̃3 = 0.445, D̃4 = 0.333

The four square loops have disappeared, and the ov
resistance has dropped to less than half of the original va
R = 157.5.

An even more complex flow structure is shown in Fig.
Eight sources of equal flow rate(ṁ) are connected in
square grid pattern to one sink(8ṁ), which is situated
in the lower-right corner. Recall that the structures
Figs. 1–3 were optimized by finding an expression for
dimensionless pressure dropR in terms of the unknown
diameters, and by minimizingR. The minimization was
performed by function evaluation in nested loops. T
procedure worked well because there were only a
degrees of freedom.
s

l
,

Fig. 4. Flow structure connecting eight sources with one corner sink.
uniform structure with tubes of the same size (top), and the nonuni
structure for minimum overall flow resistance (bottom).

The flow architecture of Fig. 4 has 12 degrees of freed
Instead of developing an analytical expression forR, we
found R by solving numerically the system of equatio
relating the mass flow rates to the pressure drops. N
we performed the optimization of the structure by usin
pseudo-random generator to generate values for the
diameters that satisfy the total volume constraintAp. We
solved the system of equations for each set of diame
and calculatedR. We then compared the newly calculat
R value with the smallestR calculated previously, and
if appropriate, we updated the smallestR value. In this
methodology we know in advance that we will not find t
optimal configuration (the one for whichR is the absolute
minimum), but we expect to find a configuration, or seve
configurations, the performance of which is close to
absolute best.

First, we tested this random-search procedure by appl
it to the simpler flow structure of Fig. 3, eight sourc
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Table 1
Optimization results for the flow structure of Fig. 3

Nested loops Random search

Rmin 157.50 158.25
D̃1 0.2824 0.2837
D̃2 0 0.0122
D̃3 0.4453 0.4476
D̃4 0.3331 0.3308

with one central sink, for which we know the optim
configuration. The results obtained after 50 000 steps
listed in the last column of Table 1. The first colum
(nested loops) represents the results of the minimizatio
the analytical expression forR, namely Eq. (12) and th
structure drawn in the lower part of Fig. 3. The step-
step evolution of the random search is presented in the u
frame of Fig. 5, where the number of improvements on
abscissa represents the number of new configurations
perform better (at a lowerR) than the starting configuratio
with all diameters equal(R = 360) as the search progresse
Table 1 shows that the random search leads to a
structure and level of performance that approach v
closely the results obtained with the minimization of t
analytical expression.

Next, we applied the random search method to
optimization of the more complex structure of Fig. 4. W
performed five searches consisting of 5× 106 steps each
Each new search is based on a different state (seeds) fo
pseudo-random generator, to ensure that a different s
diameter values is generated. The evolution ofR is reported
for each search in the lower part of Fig. 5. The low
R value obtained in all five searches was 510.89, wh
corresponds to the diameters:

D̃1 = 0.3985, D̃5 = 0.2647, D̃9 = 0.3166

D̃2 = 0.3942, D̃6 = 0.1059, D̃10 = 0.0752
(13)

D̃3 = 0.3592, D̃7 = 0.3903, D̃11 = 0.0438

D̃4 = 0.3468, D̃8 = 0.3047, D̃12 = 0.0477

We performed additional computations to test the rob
ness of the results, and to try other configurations that
intuitively plausible, i.e., competitive relative to the confi
urations generated by the random search method. Tab
summarizes these results. The first column shows the re
of random search. In case 2 we used the results of the ran
search (first column), but imposed̃D11 = 0 and increased
D̃1 in order to satisfy the total volume constraint. In cas
we switched the values of̃D11 and D̃12. In case 4 we se
D̃10 = 0 and increased̃D1 to satisfy the volume constraint

The Rmin values listed at the top of Table 2 sho
that these modifications (cases 2–4) produced only m
improvements in global performance. This supports
observation [10] that when the optimized structure beco
more complex, details such as the value assigned toD̃11
do not affect significantly the level of global performan
Optimized flow structures may not be identical in eve
r

t

e
f

s

Fig. 5. Evolution of the random-search results for the structure with e
sources and one central sink (Fig. 3), and for the structure with eight so
and one corner sink (Fig. 4).

detail, but each performs near the optimal level, and e
resembles a tree.

Another way to search for a flow structure better th
cases 2–4, is to adopt the modifications from the start (
set D̃10 = 0), and to search for the remaining diamete
We considered six additional cases, which are reporte
Table 3. In each case we performed five random-sear
with 5× 106 steps each.

The results for the case with̃D10 = 0 are listed in the firs
column of Table 3. The overall resistance(R = 481.14) is
lower than in all the tries summarized in Table 2, theref
we continued on this course and assumed that two tube
absent,̃D10 = D̃6 = 0. The results of the random search a
listed under case 2 in Table 3, which also shows that
global resistance has decreased.

Case 1 of Table 3 also shows thatD̃12 tends to disappea
In case 3 we assumed that̃D12 is absent, this in addition t
settingD̃10 = 0, and we registered an even smallerR value.
In conclusion, the decision to assume away the tube
shows tendency of disappearing provides a shortcut tow
lower resistances.

Cases 2 and 3 show that̃D5 is considerably smaller tha
the other diameters, which means thatD̃5 tends to disappea
We started with this assumption in case 4, and repeate
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4

Table 2
Optimization results for the flow structure of Fig. 4

Random search Case 2 Case 3 Case

Rmin 510.8924 506.3647 510.9772 497.9279
D̃1 0.3985 0.4009 0.3985 0.4055
D̃2 0.3942 0.3942 0.3942 0.3942
D̃3 0.3592 0.3592 0.3592 0.3592
D̃4 0.3468 0.3468 0.3468 0.3468
D̃5 0.2647 0.2647 0.2647 0.2647
D̃6 0.1059 0.1059 0.1059 0.1059
D̃7 0.3903 0.3903 0.3903 0.3903
D̃8 0.3047 0.3047 0.3047 0.3047
D̃9 0.3166 0.3166 0.3166 0.3166
D̃10 0.0752 0.0752 0.0752 0
D̃11 0.0438 0 0.0477 0.0438
D̃12 0.0477 0.0477 0.0438 0.0477
e

t
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one
e 6
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he
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he
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The
rall
random search by setting̃D5 = D̃6 = D̃10 = 0 from the start.
In this way, we obtained a lower globalR value. Next, in
case 5, we added̃D5 to the list of vanishing tubes, and th
global resistance decreased even further.

Case 5 on Table 3 identifies̃D3 as the next and las
candidate to disappear. This is the last candidate bec
if more than four tubes disappear then there will be
source that will not be connected to the sink. Cas
shows the results obtained by assumingD̃3 = D̃5 = D̃10 =
D̃12 = 0. The global resistance has decreased to 449
which is the lowest level. This structure is shown in t
lower part of Fig. 4. The uniform structure shown in t
upper figure is characterized bỹDi = 12−1/2 = 0.289 (i =
1,2,3, . . . ,12) andR = 972. The overall flow resistanc
drops by 53.7 percent in going from the top structure to
bottom structure of Fig. 4.

The most complex flow structure that we have optimiz
by random search is shown in Fig. 6, where 24 equal sou
are connected to one central sink. This structure mus
optimized as a new case, because it cannot be generat
splicing together four of the structures optimized in Fig.
The upper drawing shows the uniform grid, whereR =
14 400 andD̃i = (40)−1/2 = 0.1581 (i = 1,2,3, . . . ,40).
The tube volume constraint isAp = 2(D2

1 + D2
2 + D2

7 +
D2

8)+ 4(D2
3 +D2

4 +D2
5 +D2

6 +D2
9 +D2

10 +D2
11+D2

12)=
constant. Following the same route and number of sear
used in the optimization of the structure of Fig. 4 (name
five searches per case, with 5× 106 steps each), we starte
with all the ducts present, and found a configuration w
R = 6 848.8. In this configurationD̃10 was the smalles
diameter. Next, we set̃D10 = 0 from the beginning, and
found R = 6 054.7 with D̃6 as the smallest (non-zero
diameter. Next, by setting̃D6 = D̃10 = 0 we obtainedR =
5 494.2 with D̃12 as smallest diameter. Next, after assumi
D̃6 = D̃10 = D̃12 = 0 we foundR = 4 808.0 with D̃11 as the
smallest diameter. Finally, for̃D6 = D̃10 = D̃11 = D̃12 = 0
the overall flow resistance dropped toR = 4322.5. This
optimized structure is shown in the lower part of Fig. 6. T
overall flow resistance dropped by 70 percent relative to
resistance of the structure on the top of Fig. 6.
e

,

y

Fig. 6. Flow structure connecting 24 sources with one central sink.
uniform structure (top), and the nonuniform structure for minimum ove
flow resistance (bottom).
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Table 3
Optimization results for the structure of Fig. 4; tubes that show a tendency to disappear were assumed absent at the start of the numerical sew
structures with lower resistance

Case 1 Case 2 Case 3 Case 4 Case 5 Case

Rmin 481.1378 477.6312 474.8464 470.6260 467.6999 449.8539
D̃1 0.4043 0.4058 0.3887 0.4087 0.3449 0.3041
D̃2 0.4151 0.3994 0.4153 0.3867 0.2705 0.3134
D̃3 0.3616 0.3906 0.3549 0.3707 0.0589 0
D̃4 0.3386 0.2983 0.3423 0.3248 0.3294 0.3505
D̃5 0.2715 0.0041 0.0192 0 0 0
D̃6 0.0360 0 0.0811 0 0.3616 0.3753
D̃7 0.3836 0.3920 0.4123 0.3665 0.4310 0.4561
D̃8 0.3117 0.2499 0.3401 0.2560 0.3303 0.3286
D̃9 0.3082 0.1577 0.2781 0.1195 0.2996 0.2921
D̃10 0 0 0 0 0 0
D̃11 0.0565 0.3228 0.2517 0.3669 0.4248 0.3798
D̃12 0.0363 0.2984 0 0.3004 0 0
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5. Erodable porous medium

The next step toward more complex flow structures i
consider the flow between an infinite number of identi
sources and one sink. We assume that the sources
distributed uniformly over a two-dimensional domain(A),
and their constant flow rate per unit area isṁ′′ [kg·m−2·s−1].
The entire stream generated over this domain esc
through one point sink, e.g., the lower-left corner of
square domain shown in Fig. 7. In place of all the tubes w
Hagen–Poiseuille flow used in the preceding flow struct
here we assume seepage flow in the Darcy regime,
generally nonuniform porous medium,

u= −K
µ

∂P

∂x
, v = −K

µ

∂P

∂y
(14)

where(u, v) are the volume-averaged velocity compone
and K is the local permeability of the medium. Th
conservation of mass requires

∂u

∂x
+ ∂v

∂y
= ṁ′′

ρD
(15)

The permeabilityK is in general not uniform. The flow
erodes the medium in order to create for itself paths of
duced resistance. These paths are modeled as regions
increased permeability. The original (background) per
ability of the medium that has not been eroded is lower t
the permeability of the eroded regions. Erosion is mode
by dividing the domain into a large number of elemen
blocks of length scaleD, and by assuming that the flow r
moves (pushes out of the way) certain blocks. Eq. (15)
be nondimensionalized usingD as length scale,

(x̃, ỹ)= (x, y)

D
, P̃ = PρK0

ṁ′′µD
(16)

whereP is the pressure in excess of the pressure at the p
sink, andK0 is a reference permeability. Eq. (15) become

∂
(
K ∂P̃

)
+ ∂

(
K ∂P̃

)
+ 1 = 0 (17)
∂x K0 ∂x̃ ∂y K0 ∂ỹ
e

h

t

Fig. 7. Porous domain with mass flow rate generation at every point,
one sink in the lower-left corner.

Instead of the total tube volume constraint invok
in the preceding optimizations, here we assume that
void volume is fixed. The reference case is the orig
medium of permeabilityK0 and uniform porosityφ0. The
corresponding void volumeφ0V is fixed. This case is
analogous to the uniform flow structures with tube diame
of only one size (e.g., Fig. 4, top). Instead of searching
the optimal distribution of tube diameters, now we sea
for the redistribution of void space such that the ove
resistance decreases. The overall resistance is proportio
the largest pressure drop over the domain, namelyPpeak− 0,
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wherePpeak is the pressure at the point with the high
pressure. This is analogous to the treatment of the
structures of Figs. 2–4 and 6, where the highest pres
occurred at the source situated the farthest from the s
The dimensionless peak pressure drop, which plays the
of the resistanceR of the preceding flow structures, is

P̃peak= PpeakρK0

ṁ′′µD
(18)

For simplicity, we assume that the void volumeV is
distributed over regions of only two types:

(1) Low permeabilityK1 < K0, porosityφ1, volumeV1,
void volumeφ1V1.

(2) High permeabilityK2 > K0, porosityφ2, volumeV2,
void volumeφ2V2.

The total volume occupied by the porous domain is fix
V = V1 + V2. The total void volume is also fixed,φ1V1 +
φ2V2 = φ0V , or

φ1

φ0

V1

V
+ φ2

φ0

V2

V
= 1 (19)

Next, we assume Kozeny’s relation between permeabil
and porosities

K0,1,2 = d2φ3
0,1,2

β(1− φ0,1,2)2
(20)

whereβ is a constant of order 102, and d is the pore (or part
cle) length scale. The permeability ratioK/K0 appearing in
Eq. (17) stands forK1/K0 orK2/K0, depending on the flow
region. Such ratios are related to the respective porositie
Eq. (20),

K1,2

K0
=

(
φ1,2

φ0

)3( 1− φ0

1− φ1,2

)2

(21)

Numerical flow simulations were performed over a squ
domain made up of 21× 21 elemental squares of sideD,
Fig. 7. An interesting question is how sensitive the num
ical results will be to the number of elemental blocks u
to discretize the domain. This is a good direction to exp
in the future. The assumed reference porosity wasφ0 = 0.4.
We chose this value because it is representative of the r
of sands and soils. The value of the corresponding pe
ability K0 is not required for the calculations, but it cou
be estimated from Eq. (2) based on information regard
the pore length scale. The pressure distribution in the re
ence case is shown in Fig. 8. The peak pressure occurs
upper-right corner,̃Ppeak= 850.78.

To study the question of how the nonuniform distributi
of structure (porosity, permeability) can be used to low
the overall resistance to flow, we considered the case w
the low- and high-permeability domains are characterize
K1/K0 = 0.9 andK2/K0 = 10. The corresponding porosi
ratios are determined from Eq. (21), namely,φ1/φ0 = 0.976
and φ2/φ0 = 1.568. The volume ratios in this case a
e

e

Fig. 8. The pressure distribution in the reference case where the perm
ity and porosity are uniform.

V1/V = 0.959 andV2/V = 0.041, meaning that out of th
21×21 elements, region 1 occupies 423 elements and re
2 occupies 18 elements.

Fig. 9 (case A) shows a configuration where region
centered around the sink. The overall resistance isP̃peak=
425.8, which is almost half of the resistance in the refere
case. Clearly, the redistribution of the voids has a la
impact on the global resistance of the flow structure. T
region with much higher permeability is located near
sink, that is, in the region where flow velocities are
highest. High velocities are also the cause of erosion in
porous media, and so the comparison of Fig. 8 and case
Fig. 9 suggests that a structure generating mechanism
as erosion can have a great impact on lowering the gl
resistance.

The step taken in going from Figs. 8 and 9 (case A
analogous to going from a uniform grid of tubes (e.g., Fig
top) to a grid with two tube sizes, and placing the wider tu
near the point sink. Review Figs. 2–4 and 6, and note th
the optimized flow structures the tubes that touch the p
sink are the widest. The question that remains is whe
the concentration of high-permeability elements depicte
case A of Fig. 9 represents the optimal flow structure.

We pursued this question in cases B to E of Fig. 9, wh
the objective was to discover flow structures that evo
toward lower resistance. Five competing structures w
compared. In case B, we removed at each step the ele
that had the highest pressure averaged over its surface
shared at least one face with the eroded(K2) region. The
first element was the one touching the sink. For the sec
element, we had a choice between the element immedi
to the right of the first, and the one immediately above, b
with the same value of averaged pressure. In case B
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step.
Fig. 9. Five scenarios showing the monotonic decrease in global resistance as finger-shaped regions of high permeability develop step by
one
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wanted to remove one element at a time: we removed the
on the right, and continued the removal process. The fig
shows that the overall resistance decreases at every ste
reaches 432.5 when 18 elements are removed.

Case C is based on a strategy that combines the strat
used in cases A and B. We started the erosion proces
removing the four elements that are closest to the sink.
process was then continued by using the same strateg
for case B. The end result is that after the removal of al
elements the overall resistance dropped to a level lower
in cases A and B, namelỹPpeak= 403.31.

Case D started with the removal of the element touch
the sink, and continued with identifying and removing t
next element that has the highest pressure averaged
its surface. We required that each such element touche
one point) the existingK2 region. In other words, unlike in
cases B and C, the removed element did not have to sh
face with theK2 region. We found that the overall resistan
decreases more slowly than in the preceding cases, rea
P̃peak= 503.54 after the removal of all 18 elements.

Case E is the result of starting the process as in cas
but removing the element (or elements) that have the hig
pressure averaged over its surface and share a face wi
K2 region. The first removed element is the one that touc
d

s

s

r
t

a

g

,
t
e

the sink. The next elements come in pairs. For example
the second step we removed the elements situated to the
and above the first removed element. In this way the fl
structure grows as two fingers, and the overall resista
drops to the lowest level,̃Ppeak= 367.72.

Scenarios B–E of Fig. 9 were all based on a pres
removal criterion. The element selected for removal w
the one with the highest pressure integrated over its sq
boundary. An alternative is to seek the element with
maximum pressure gradient. This criterion is more rea
tic because the pressure gradient is proportional to (and
anced by) the cohesive stresses that connect the elem
its neighbors, and keep the element in place.

This alternative was pursued for cases B to E of Fig
The only change introduced is that instead of looking
elements with the highest averaged pressure, we sea
for the element with the highest pressure gradient.
numerical experiments for cases B, C and D are repo
in Fig. 10. In the top frame we show the evolution of t
overall flow resistance in cases B and D. The overall fl
resistance is considerably lower than in the correspon
structures based on the pressure removal criterion. Th
and D structures obtained based on the pressure gra
criterion are the same, i.e., there is no difference w
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Fig. 10. The development of eroded flow structures based on the maxi
pressure gradient criterion, and comparison with the flow resistanc
structures based on the maximum pressure criterion.

removing one element at a time, using the highest pres
gradient criterion, if we choose from the elements that sh
a face with theK2 region or those that touch it.

The lower frame of Fig. 10 shows the same compari
for case C. The identification and removal of the “m
stressed” elements leads to eroded structures that
consistently lower flow resistances. The E structure obta
based on the pressure gradient criterion is the same as
structure obtained based on the pressure criterion.

The generated structures and the removal sequence
cases B to E are reported in Fig. 11. The structures on
left are based on the pressure criterion, and those on the
are based on the pressure gradient. It is interesting to se
in the case of the pressure gradient criterion, which resu
in structures with lower resistances (Fig. 10), fingers app
and the structures look like the one obtained for case E b
on the pressure criterion. The latter had the lower resista
in Fig. 9.
e

E

r

t
t

6. Optimal permeability

To summarize the porous medium model develope
Section 5, we started with a volumeV filled with a reference
(homogeneous) porous medium of permeabilityK0 and
porosity φ0. The total void spaceφ0V is fixed, and is
distributed uniformly throughV . We then considered th
construction of a combination of two flow regions insideV ,
with the objective of minimizing the overall flow resistanc
Region 1 has the low permeabilityK1 (< K0), volumeV1,
and porosityφ1, while region 2 has the high permeabilityK2
(> K0), volumeV2, and porosityφ2. The total volume and
total void volume are fixed and equal to the reference val
V1 + V2 = V andφ1V1 + φ2V2 = φ0V0.

In Section 5 we fixed the two permeabilities (K1/K0 =
0.9,K2/K0 = 10), and showed that it is important howV1
andV2 are distributed throughV . The overall resistance i
minimized by allowingV2 to grow as fingers surrounded b
V1 (Fig. 9). In this section, we relax theK2/K0 constraint,
and ask whether the high permeability can also be sele
so that the overall flow resistance is minimized.

It can be shown that the total volume(V ) and total void
volume (φ0V ) constraints can be used to obtain

V1

V
= φ2 − φ0

φ2 − φ1
(22)

V2

V
= φ0 − φ1

φ2 − φ1
(23)

The lower limit of the high permeability isK2/K0 = 1. In
this caseφ2 = φ0 andV1 = 0, and all the blocks that fil
V are of type 2. We showed in Fig. 8 that in this lim
P̃peak= 850.78 whenφ0 = 0.4.

In the opposite extreme (K2/K0 → ∞), φ2 approaches 1
andV1/V andV2/V are bounded becauseφ2 � 1:

V1

V
� φ0 − 1

φ1 − 1
(24)

V2

V
� φ1 − φ0

φ1 − 1
(25)

For the parameters fixed in this paper (φ0 = 0.4,K1/K0 =
0.9), the limits areV1/V = 0.984 (or 434K1-blocks out of
441), andV2/V = 0.01586 (or 7K2-blocks out of 441). In
this limit,K2/K0 = 1.37× 107 andP̃peak= 466.12.

Fig. 12 shows the effect of varyingK2/K0 whenφ0 and
K1/K0 are fixed. There is an optimal high permeabil
(K2/K0 = 16.3) where the overall flow resistance is mi
imal. Each point in Fig. 12 was obtained using the pr
sure gradient removal criterion. At each step, the block
blocks) with the highest pressure gradient was chosen
among the blocks touching theK2 region.

We continued in this direction, investigating the possib
ity of optimizing the low permeability,K1/K0. We found
that it is possible to optimize both the low (K1/K0) and
high (K2/K0) permeabilities. Fig. 13 shows the behav
of the overall resistance whenK2/K0 has been optimized
TheK2-minimized overall resistance exhibits a minimum
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Fig. 11. Structures generated based on the pressure removal criterion (left) and the pressure gradient removal criterion (right).
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Fig. 12. The minimization of the overall flow resistance by selecting
high permeability of the finger shaped region.

Fig. 13. The effect of the background (low) permeability on the overall fl
resistance minimized in Fig. 12.

39.5 that corresponds toK2/K0 = 993.1 andK1/K0 ≈ 0.1.
Fig. 13 also shows the structure corresponding the opt
permeabilities, wherePpeak= 39.5.

7. The medium responds to and attracts the flow

It is useful to look back and ask why dendritic flo
structures occur in a flow between a point and an a
or a point and a volume. The answer is not the fl
configuration, because there are many such flows wher
pattern of streamlines is radial, without ramifications. It
“uniformly” distributed. For example, in a volumetrical
averaged homogeneous and isotropic porous medium
a point source, the flow proceeds in straight lines aw
from the source. The same pattern is exhibited by ther
diffusion (heat conduction) from a heat source embed
in a homogeneous and isotropic medium. A source
electric current generates a similar pattern. Lines of cons
pressure, temperature, and electric potential are circles
the source placed in the center (e.g., Fig. 8).
Unevenly distributed flows such as the tree-shaped
works occur because the originally homogeneous and
tropic medium has additional properties that are not evid
until the flow process begins. First, the medium has a ch
ing (malleable) constitution that allows it to organize its
into regions with distinct resistivities to flow—high and lo
resistivities. Second, a positive feedback (or economie
scale) mechanism is in place: the low resistivitiy becom
even lower when the flow rate that passes through the
resistivity region increases. To see this, assume that ins
of the two tubes with Hagen–Poisseuille flow (Fig. 1)
have two tubes filled with a thermally conductive solid. T
thermal conductivity is constant,k. The overall temperatur
difference that drives the heat flow is�T . The conduction
heat currents through the two tubes are

q1 = πD2
1k�T

4L
(26)

q2 = πD2
2�T

4L
(27)

The constraints areL and the total tube volume, name
D2

1 + D2
2 = constant. Because of this, the overall therm

conductance of the assembly is fixed,

(q1 + q2)
4L

πk�T
=D2

1 +D2
2, constant (28)

Unlike in Fig. 1, there is no opportunity to optimize th
structure (i.e., to select the size ofD1 vs.D2), even though
the heat flow configuration is analogous to the fluid fl
arrangement. The difference, and the reason why in
case of fluid flow it is better when one large tube repla
two smaller ones, is visible when we compare Eqs. (1),
with Eqs. (25), (26). The fluid flow rates are proportion
to D4

1 andD4
2, while the heat currents are proportional

D2
1 andD2

2. This means that fluid flow is analogous to he
conduction through a medium the conductivity of whi
increases with the tube diameter squared. The large
stream through one tube, the lower the resistance, and
invites an even larger stream to flow through that tube.
medium responds to the flow, and, as a consequenc
this property, develops itself into a macroscopically visib
unevenly distributed flow structure.

8. Concluding remarks

In this paper we documented the emergence of non
form flow structures when the objective is the minimizat
of the resistance to flow between one point and many po
The flow structure (flow path, channel sizes) was free to v
In the first part of the paper, we modeled the flow as lam
fully developed through straight tubes. This allowed us
optimize flow paths between one point (source, or sink)
3, 8, and 24 points positioned equidistantly in a square
tern in a plane. In the second part, we modeled the med
as a continuum with Darcy flow, where the flow structure
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the result of a process of erosion. Note that Hagen–Poise
flow is the analog of Darcy flow when the pore Reyno
number is considerably smaller than 10. In all the flows
alyzed and optimized in this paper, the flow velocities w
proportional to the local pressure gradients.

Several conclusions are worth stressing. Nonunifo
tree-shaped flow structures are the design solution to
minimization of global resistance to flow between a volu
and one point. Channels are fewer and thicker near
tree root (source, sink). Eroded regions are wider n
the tree root. The fluid flows along preferred paths. F
maldistribution is necessary in the pursuit of lower flo
resistance. Optimal maldistribution, or optimal distributi
of imperfection (flow resistance) is the key to identifyi
the flow structure with minimal resistance. Converse
the assumption of flow uniformity leads to designs w
comparatively much higher resistances.

In the spaces bathed by flows through tubes with Hag
Poiseuille flow, we saw that structural symmetry wo
in the direction of increasing the flow resistance. T
minimization of resistance calls for the abandonment of fl
symmetry, which is consistent with greater freedom in
design, and greater nonuniformity in the optimized struct

For the erodable porous medium, the choice of differ
sizes and shapes of elemental blocks can be the subje
future research. Design and manufacture considerations
dictate the proper size and shape when the nonunifor
is man controlled (i.e., designed). The modeler crite
should dictate the proper size and shape in cases wher
nonuniformity appears naturally (e.g., erosion) in a way t
better captures the phenomena.

The flow structures developed in this paper illustrated
progress from simple structures (Fig. 2) to more comp
structures (Fig. 6). In this direction, the tubes that conn
the many points become a porous structure, one that
beendesigned to meet a global objective subject to glob
constraints. When the number of points with flow is infini
as in the continuous medium with Darcy flow modeled
Fig. 7, the eroded flow structure starts from simple confi
rations and evolves toward more complex designs if the c
straints allow it. Growth in size and complexity allows t
flow structure to cover more effectively its designated spa
The relative success of the maximum pressure gradien
terion (Fig. 10), which is more realistic as an erosion mec
nism, lends additional support to the view that the maxim
tion of flow access is a principle that accounts for struct
in natural flows [10].

The mechanism that generates flow structures with m
mal resistance, which served as focus for this study, is
plicable in many fields where designed porous structu
are needed. The trend for smaller and more compact h
generating packages, which characterizes everything
heat exchangers to electronics, calls for flow structures
are effective in accessing all the points of a volume.
f

e

-

this direction of miniaturization and increased compactn
and complexity, the flow systems themselves become
signed porous media. To this end, search-acceleration
niques such as the identification of vanishing tubes (Tabl
are valuable tools for computer-aided design of optim
nonuniform flow structures in general. In future studies
may be interesting to compare the results of the rand
searches with more elaborated multi-variable, nonlinear c
strained optimization methods.
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